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Classification of First-Order Lagrangians on the 
Line 

A. H. Kara I and F. M. Mahomed  2~ 

Received September 26, 1994 

We present a complete classification for first-order Lagrangians defined on the 
line according to the Noether point symmetry algebra they admit. All possible 
canonical forms of Lagrangians that admit Noether algebras are given. 

1. ~ T R O D U C T I O N  

The simplest equivalence problem in the calculus of  variations or in 
Lagrangian mechanics is to determine under what conditions two scalar 
variational problems of first order are transformable into each other by means 
of a suitable point transformation. 

This problem has been investigated by many researchers using the Cartan 
method (see, e.g., Kamran and Olver, 1989). Here we use the symmetry 
method which involves investigating the (Noether) point symmetry algebras 
associated with Lagrangians. The objective here is to determine all canonical 
forms for particle Lagrangians defined on the line. After doing so, we make 
a synthesis of  all first-order Lagrangians that admit a symmetry algebra. 
While some work has been done in this regard (Kara et  al.,  1994; Adam et  
al., 1994), there has been no mention of a complete classification of  such 
Lagrangians. The results here have applications in mechanics. 

In Section 2, we discuss canonical forms for first-order Lagrangians 
corresponding to scalar linearizable ordinary Euler-Lagrange equations. In 
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Section 3, we present the general Noether equivalence problem. Finally, in 
Table II of Section 4, we provide a complete classification of first-order 
Lagrangians on the line. 

Below we outline a few definitions and results that will be useful for 
what follows. Although what follows applies for nth-order Lagrangians, we 
specialize to first-order Lagrangians in the sequel. 

1.1. Euler-Lagrange Equations and the Inverse Problem 

Consider a variational problem where the extremal of the functional 

n L(t, q[nJ(t)) dt (1.1) 

is desired, in which 1) is some interval containing t and q[n](t) is the tuple 
which contains all the derivatives of scalar q with respect to t up to order n. 
The solution of the above problem is related to the solution of a 2nth-order 
differential equation by way of the Euler-Lagrange operator % defined below. 

Definition 1.1. The Euler-Lagrange operator is defined by 

( d)'  0 _ _ ~  Oq ~) % = ~ _ (1.2) 
j=o 

where qO) is the jth total derivative of q with respect to t. 
The integrand of the functional L in (1.1) is referred to as the Lagrangian. 

The Euler-Lagrange equation corresponding to L(t, qrnJ(t)) is an ordinary 
differential equation of order 2n and is given by 

OL d OL d 2 OL d" OL 
. . . . . . . . . . .  + (-1)"  - - - 0  %(L) Oq dt Oq (1) + dt 2 0q (2) dP Oq (n) 

The inverse problem in the calculus of variations involves determining a 
Lagrangian L corresponding to a given differential equation (if such a Lagran- 
gian exists). That is, given a differential equation E(t,qt"J(t)) = 0, find a 
Lagrangian L such that the Euler-Lagrange equation %(L) = 0 is equivalent 
to the given differential equation. 

1.2. Invariance of the Lagrangian 

In this section, we summarize the relevant aspects of the invariance 
of the functional (1.1) or, equivalently, the symmetries associated with the 
respective Lagrangian (in short, we shall say symmetries of the Lagrangian 
or simply Noether symmetries). 

For real-valued q(t), we may induce a change of variables 



Classification of Lagrangians 2269 

T = H(t, q), Q = F(t, q) 

A change of variables in the derivative obtained by prolongation is then also 
induced so that the functional (1.1) is then transformed into a corresponding 
functional f ~  L(T, Qtnl(T)) dT, where ~ = {T, t E l-l}. This will be the case if 

dT + d f  (1.3) 
L(t, qt~l(t)) = L(T, Qt~l(T)) d t  dt 

by means of the prescribed change of variables, where f, the gauge term, is 
a function of t and q. The two Lagrangians L and L are said to be equivalent 
up to gauge. This means that the Euler-Lagrange equations associated with 
L and L are equivalent to each other by the said change of variables. For 
strict invariance we require f = 0. 

The point symmetries associated with a Lagrangian L(t, qfnl(t)) are of 
the form 

0 ~ (1.4) G = ~(t, q) ~ + "q(t, q) aq 

defined on R z. On the prolonged space, viz., the (t, qtnl) space, the nth 
prolongation or extension of G is 

G t"l = G + i=1 ~i Oqr 

where 

~ 1 -  d'q qo) d~ ~j+l - d~J d~ for j =  1 . . . .  n -  1 
dt d t  ' dt qCi+l) dt  " 

The following theorem provides a mechanism for determining the Noether 
symmetries G associated with a Lagrangian L. 

G as in (1.4) is a point symmetry of a Lagrangian L if Theorem 1.1. 
and only if 

GtnJL + L d~ _ d f  (1.5) 
dt dt 

Equation (1.5) is often referred as a Killing-type equation (Sarlet and Can- 
trijn, 1981). 

1.3. Alternative Lagrangians 

In this section, we introduce notions which takes into account the non- 
uniqueness of the Lagrangian description of a given differential equation. 
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(Although the definition of alternative Lagrangians given below is applicable, 
little has been done in the characterization of these Lagrangians for partial 
differential equations.) 

Definition 1.2. Two Lagrangians L and s are said to be alternative 
Lagrangians for a given differential equation if their respective Euler- 
Lagrange equations imply each other, i.e., %(L) = 0 if and only if %(L) = 0. 

In the case of first-order Lagrangians, it can be shown that a given 
second-order dynamical equation can always be cast as an Euler-Lagrange 
equation for an infinitude of Lagrangians all of which need not have the 
same number of Noether point symmetries. Hence, a variety of nontrivial 
definitions concerning equivalent Lagrangians associated with a given equa- 
tion can be found in the literature. 

2. CANONICAL FORMS FOR LINEARIZABLE EQUATIONS 

The most general scalar ordinary second-order equation which is lineariz- 
able by means of a point transformation is given by 

i] = A(t, q)q3 + B(t, q)dl 2 + C(t, q)d 1 + D(t, q) (2.1) 

where A, B, C, and D satisfy the conditions 

3Art + 3A tC  - 3 A q D  + 3ACt  + Cqq - 6ADq + BCq - 2 B B  t - 2Btq = 0 

6AtD - 3BqD + 3ADt + Bu - 2Ctq - 3BDq + 3Dqq + 2CCq - CBt = 0 

(see Mahomed and Leach, 1989a). Thus, a Lagrangian for (2.1) is obtained 
by using (1.3) with L being the Lagrangian of the simplest linear_ equation 

1r Q" = 0. For example, we can choose the simplest Lagrangian L = ~-~ . 
Hence, instead of constructing Lagrangians for (2.1), we may, without loss 
of generality, construct Lagrangians for 

g/ = 0 (2.2) 

We now consider the most general Lagrangian of (2.2), viz., 

L' = g(s, q - ts) ds dr  + Ha(t, q)gl + J(t, dl) (2.3) 

where g is an arbitrary function of the first integrals of/1 = 0 and Hit = Jq 
(Mahomed et al., 1993). The classification according to the Noether point 
symmetry algebra of symmetries for (2.3) has been investigated in Mahomed 
et al. (1993). We recall that if G' is a symmetry of (2.3), then it is of the form 
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a 
G' = (a I 4- a2t + a3q + a4tq + ast 2) at  

a 
+ (a4q 2 + astq + a6 + a7q + a8t) (2.4) 

Oq 

where the a i are arbitrary constants. The function g satisfies 

ag 
(a6 - alq - a3(]v + a4v + a7v) -~v + (2a7 - a2 - 3a3q + 3a4v)g 

ag= 
+ (a8 + a7q - a2~) + asv - a3q 2 + a4(Iv) ~(1 0 (2.5) 

where v = q - to). The possible forms of g for which (2.3) admits a Noether 
algebra are given in Adam et al. (1994). The corresponding Lagrangian for 
this case is listed in Table II. As a consequence of this classification, the 
following result is proved in the above reference. 

Theorem 2.1. A Lagrangian of the form (2.3) admits a maximal real 
one-, two-, three-, or five-dimensional Noether point symmetry algebra. 

It is well known that a linearizable second-order equation (2.1) admits 
the maximal eight-dimensional Lie algebra sl(3, R). In contrast, a Lagrangian 
of the l inearizable second-order equation can admit any one of one-, two-, 
three-, or five-dimensional Noether point symmetry algebra. Hence, a varia- 
tional formulation is richer in terms of an algebraic analysis. This is due to 
the alternative Lagrangian (2.3) of (2.2). 

3. THE GENERAL NOETHER EQUIVALENCE PROBLEM 

We now consider the general case, i.e., when a second-order equation 
is not linearizable by means of a point transformation. The discussion here 
depends on the following theorem proved in Mahomed and Leach (1989b). 

Theorem 3.1. A scalar second-order ordinary differential equation does 
not admit a maximal real four-, five-, six-, or seven-dimensional point symme- 
try algebra. 

The classification of Lagrangians according to Noether point symmetries 
is made by considering the Lie equivalence problem. The complete real 
classification of second-order ordinary differential equations according to the 
Lie point symmetry algebra they admit is given in Mahomed and Leach 
(1989b) and Mahomed et al. (1993). We summarize the nonlinearizable 
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equations in Table I together with the point symmetries they admit. Lagrangian 
representations of these equations are given in Table II. 

We refer to the Lie algebras in Table I as L;;j if there is more than one 
algebra Li of  dimension i. It has been shown in Kara e t  aL  ( 1 9 9 4 )  that if a 
scalar second-order ordinary differential equation admits a maximal one-, 
two-, or three-dimensional algebra ~l, then there exists a Lagrangian which 
admits ~ as its Noether algebra provided ~ is the real algebra L1, L2;1, L2;2, 

/-,3;2 ( a  = - 1), ]-,3;3 (b  = 0) ,  L3.4 , L3;5, o r  L3; 6, H o w e v e r ,  i f  a n  e q u a t i o n  a d m i t s  
/-,3;1, L3.2 (a arbitrary), or L3;3 (b arbitrary) as its maximal algebra, then the 
Noether algebra is at most two dimensional. 

4. DISCUSSION 

This paper completely classifies first-order Lagrangians associated with 
scalar second-order ordinary differential equations admitting non-similar 
Noether point symmetry algebras. We remind the reader that two Noether 
algebras are similar if they are isomorphic to each other and they can be 
transformed into each other by a point transformation using (1.3). We summa- 
rize the results in Table II, For the case in which the Euler-Lagrange equation 
admits the s l ( 3 ,  R) algebra, we list the functions g from which the Lagrangian 
is obtained by (2.3) subject to the condition Ht, = Jq (note that v = q - tq ) .  

For the other cases we list the Lagrangian L. 
We note that in Table II, A is a nonzero constant and ot an arbitrary 

nonzero function of its argument in each case. Also, Table II presents a real 
classification of particle Lagrangians. In the complex classification there are 
seven nonisomorphic three-dimensional algebras and one no longer requires 
the 5th, I lth, and 13th cases of  dimension three in Table II. 

Table L Nonlinearizable Equations and Point Symmetries a 

Dimension Symmetries Equation 

Zl 
L2 

L3 

r # = E(t, 4) 
p, r # = E(q) 

p, tp + qr t 4 = E((~) 
r, p,  tp + (t + q)r // = e x p ( - q )  
p, r, tp + aqr i] = q ( a - 2 ) / ( a - l )  (a v ~ 0, 1/2, 1, 2) 
p, r(bt + q)p + (bq - t)r • = (1 + r exp(b arctan q) 
r, tp + qr, 2tqp + qZr t~ = Aq 3 - • 

2 

r, tp + qr, 2tqp + (q2 ~_ tT)r t~ = --+ Lj a + q + A([ --+ 42) 3j~ 
(1 + ta)p + tqr, tqp + (1 + q2)r, qp - tr {1 + q2 + (q - -  tq)213z-~ 

r  l + t 2 + q  2 j 

~p = alOt, r =  dlaq. 
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Table II. Lagrangian Representations a 

Dimension Symmet ry  Lagrangian/g 

1 r f~ F(t, x) dx  (F = O) 
tp + qr g = eL((l)lv 
tp + aqr, a 4= 0, 1 g = (l(l--2a)l(a--l)ol(Yq al(l-a)) 
p + tr g = a(v  + � 8 9  2) 
p + qr g = a[(l exp(vl(l)]l(l 2 

2 p, r fo [fr dsl~(s)] dr  - t(l 
r, tp + qr (fi t)  fo [exp f r  dsl~(s)]  dr 

r, qr  + p g = A(l -z  

p, r g = a((l) 
tp, qr g = A/(v(l) 

3 p, r, tp - qr  - 4 ( l  It2 + q 
p, r, qp - tr - ( 1  + (12) 3/2 + t(l 

p,  tp + qr, 2tqp + qZr (lit + l(2tq) or (tit - l/(2t~)) 
r, tp + qr, 2tqp + (q2 ~ tZ)r t - l (1  _+ t)z)lr2 + At- i ( l  
(1 + tZ)p + tqr, t q p +  (1 + qZ)r, (b) 

qp -- tr 
r, p, tp + (t + q)r g = A e x p ( - ( l )  
p, r, tp - qr  g = A(1-3i2 

p, r, tp + aqr [a = (1 + s)/(2 + s)] g = A ~ ,  s v~ 0, - 2 ,  - 3  
p, r, tp g = Aq -L 
p, r, qp - tr g = A(1 + (12) -3/2 
p, r, (bt + q)p + (bq - t)r, b > 0 g = A(1 + (12) -3/2 exp(b arctan (l) 
r, tp + qr, 2tqp + (q2 -7- tZ)r g = A(q - t(l + t~2/2) -3/2 
(1 + t2)p + tqr, t q p +  (1 + q2)r, g = A[I + (q - t(l) 2 + (12]-3/2 

qp - tr 
5 p, r, tr, t2p + tqr, 2tp + qr �89 2 

ap = ~lOt, r = blOq. 
bHere the Lagrangian is of the form 

(1 + t2)-312[(y - (l)sin to + [3 sec to] + b(t, q)(l + c(t, (l) L 

where b and c satisfy bt = Cq + A(I + t 2 + q2)-3/2 and x = (1 + t 2 + q2)1/2/(1 + t2), 13 = 
qx, tan to = ((l - y)lx, and y = tql(1 + t2). 

Some remarks are now in order. First, and this is an important point 
peculiar to Noether algebras, two Noether algebras can be similar but their 
respective Lagrangians need not be equivalent to each other. This can easily 
be observed from Table II. To illustrate this, we consider the algebra of 
symmetries p ,  r, t p  - q r .  This representation implies two Lagrangians (see 
Table II) which are not equivalent to each other by means of a point transfor- 
mation. Second, we make the point that the dimensionality of the Noether 
algebra of a Lagrangian associated with a linear or linearizable equation need 
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not be maximal (i.e., five dimensional). This was apparent in our discussion 
on alternative Lagrangians. 
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